Fecha

GEOMETRÍA

La geometría (del latín geometrĭa, y este del griego γεωμετρία de γεω gueo, tierra, y μετρία metría, medida) es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras en el plano o el espacio, incluyendo: puntos, rectas, planos, politopos (que incluyen paralelas, perpendiculares, curvas, superficies, polígonos, poliedros, etc.).

Es la base teórica de la geometría descriptiva o del dibujo técnico. También da fundamento a instrumentos como el compás, el teodolito, el pantógrafo o el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales).

Sus orígenes se remontan a la solución de problemas concretos relativos a medidas. Tiene su aplicación práctica en física aplicada, mecánica, arquitectura, geografía, cartografía, astronomía, náutica, topografía, balística, etc. Y es útil en la preparación de diseños e incluso en la elaboración de artesanía.

La geometría es una de las ciencias más antiguas. Inicialmente está constituida en un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes.La civilización babilónica fue una de las primeras culturas en incorporar el estudio de la geometría con la invención de la rueda se abrió el camino al estudio de la circunferencia, que conllevaría posteriormente al descubrimiento del número π (pi); También desarrollaron el sistema sexagesimal, al conocer que cada año cuenta con 360 días, además implementaron una fórmula para calcular el área del trapecio rectángulo.1 En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto, Estrabón y Diodoro Sículo. Euclides, en el siglo III a. C. configuró la geometría2 en forma axiomática y constructiva, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en Los Elementos.

El estudio de la astronomía y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes desarrolló simultáneamente el álgebra de ecuaciones y la geometría analítica, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial.


Axiomas

En geometría euclidiana, los axiomas y postulados son proposiciones que relacionan conceptos, definidos en función del punto, la recta y el plano. Euclides planteó cinco postulados y fue el quinto (el postulado de paralelismo) el que siglos después –cuando muchos geómetras lo cuestionaron al analizarlo– originará nuevas geometrías: la elíptica (geometría de Riemann) o la hiperbólica de Nikolái Lobachevski.

En geometría analítica, los axiomas se definen en función de ecuaciones de puntos, basándose en el análisis matemático y el álgebra. Adquiere otro nuevo sentido hablar de puntos, rectas o planos. f(x) puede definir cualquier función, llámese recta, circunferencia, plano, etc.


Tipos de geometría

Desde los antiguos griegos, ha existido numerosas contribuciones a la geometría, particularmente a partir del siglo XVIII. Eso ha hecho que proliferen numerosas subramas de la geometría con enfoques muy diferentes. Para clasificar los diferentes desarrollos de la Geometría moderna se pueden recurrir a diferentes enfoques:
Geometrías según el tipo de espacio
Los antiguos griegos un único tipo de geometría a saber geometría euclídea, hábilmente codificada en los Elementos de Euclides y debido a una escuela alejandrina encabezada por Euclides. Este tipo de geometría se basó en un estilo formal de deducciones a partir de cinco postulados básicos. Los cuatro primeros fueron ampliamente aceptados y Euclides los usó extensivamente, sin embargo, el quinto postulado fue menos usado y con posterioridad diversos autores trataron de demostrarlo a partir de los demás, la imposibilidad de dicha deducción llevó a constatar que junto con la geometría euclídea existían otros tipos de geometrías en que el quinto postulado de Euclídes no participaba. De acuerdo a las moficiaciones introducidas en ese quinto postulado se llega a familias diferentes de geometrías o espacios geométricos diferentes entre ellos:

La geometría absoluta, que es el conjunto de hechos geométricos derivables a partir únicamente de los primeros cuatro postulados de Euclides.
La geometría euclídea, que es la geometría particular que se obtiene de aceptar como axioma también el quinto postulado. Los griegos consideraron dos variantes de geometría euclídea:
Geometría euclídea del plano
Geometría euclídea del espacio
La geometría clásica es una recopilación de resultados para las geometrías euclídeas.
A partir del siglo XIX se llegó a la conclusión de que podían definirse geometrías no euclídeas entre ellas:

La geometría elíptica
La geometría esférica
La geometría finita
La geometría hiperbólica
La geometría riemanniana





No hay comentarios:

Publicar un comentario